
Abstract The assessment of DNA mixtures with the pres-
ence of relatives is discussed in this paper. The kinship
coefficients are incorporated into the evaluation of the
likelihood ratio and we first derive a unified expression of
joint genotypic probabilities. A general formula and seven
types of detailed expressions for calculating likelihood ra-
tios are then developed for the case that a relative of the
tested suspect is an unknown contributor to the mixed
stain. These results can also be applied to the case of a
non-tested suspect with one tested relative. Moreover, the
formula for calculating the likelihood ratio when there are
two related unknown contributors is given. Data for a real
situation are given for illustration, and the effect of kin-
ship on the likelihood ratio is shown therein. Some inter-
esting findings are obtained.
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Introduction

Consider a crime case in which the stain is collected from
the scene and the reference sample is gathered from the
suspect, through a profiling system. The suspect cannot be
excluded as a contributor of the stain if the reference sam-
ple matches the crime stain. If that is not the case, a sug-
gestion may be made that one close relative of the suspect
is a probable assailant when the suspect and crime stain
share very rare alleles (Sjerps and Kloosterman 1999).

Usually, a series of hypotheses will be raised to explain
who the contributors were, and the likelihood ratio (LR) is
an effective tool to assess the strength of the evidence.
The problem of how to assign the weight of the DNA ev-
idence when one suspect’s relative is involved in the pool
of possible perpetrators was discussed by several authors
over the past years. For example, Evett (1992) established
a formula for the likelihood ratio in a case where the de-
fense is “It was my brother”; Brookfield (1994) evaluated
the effect on the likelihood ratio of the possibility that the
suspect and the source of the crime scene DNA are rela-
tives; Donnelly (1995) quantified the effect of close rela-
tives on the match probability; Belin et al. (1997) de-
scribed a new methodology that summarizes DNA evi-
dence by addressing the possibility that a relative of the
accused individual is the source of a crime sample; Sjerps
and Kloosterman (1999) discussed the assessment of
DNA profiles for close relatives of an excluded suspect;
Lee et al. (1999) described a method for inference in a
case where the true father may be a relative of the alleged
father. These authors limited the effect of kinship on the
evaluation of match probability and likelihood ratio relat-
ing to a single source DNA sample. Recently, Ayres (2000)
presented adjusted LR formulae for various two-person
relationships, incorporating the coancestry coefficient FST;
Fung et al. (2002) discussed the probability of exclusion
when the alleged father is a relative of the true father in
paternity testing.

It is a common case that the DNA material from the
crime scene was contributed by more than one person,
e.g. the victim and the perpetrator. Weir et al. (1997) con-
sidered the interpretation of DNA mixtures and derived a
general formula for the evaluation of the LR; Curran et al.
(1999) and Fung and Hu (2000a) extended the results to
the situation where the relatedness between persons is de-
scribed by the formula given by Balding and Nichols
(1994). The model of Balding and Nichols (1994) is quite
general, and the formulae are simple to employ (National
Research Council 1996). Harbison and Buckleton (1998)
applied the Balding-Nichols formula to a simple mixed
sample case. Expressions of likelihood ratios for six com-
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mon cases are reported in Fung and Hu (2002a) when the
contributors to a DNA mixture belonged to different ethnic
groups. Fung and Hu (2000b, 2002b) discussed the evalua-
tion of match probability in single and multiple racial groups
under the NRC-II recommendation 4.1 (National Research
Council 1996). Recently, Fukshansky and Bär (2000) con-
structed a formula for the evaluation of LR when the sus-
pect is not tested but relatives are. They considered three
different kinds of relationship namely, child-parent, sib-
lings and half-siblings. In this paper, we consider the eval-
uation o f LR incorporating the kinship coefficients (Cot-
terman 1941; Wenk et al. 1996), when relatives of the sus-
pect are involved in the pool of possible perpetrators.
General formulae for calculating the LR are given for the
following two cases: the case that a relative of the tested
suspect was an unknown contributor and the case that two
related unknowns were contributors. It is noted that in the
first case the relative is an unknown contributor since in
some situations the relative concerned may refuse to co-
operate or may not be approachable for various reasons,
including death.

In this paper, we study the evaluation of DNA mixtures
when the relatives are involved as the source contributors.
We present a general formula for the evaluation of LR
which can meet most needs. Two particular results with
the presence of relatives are provided. A single unified
expression for joint genotypic probabilities is also pre-
sented. The implementation of the given formulae and the
effect of kinship on the LR can be seen from the analysis
of one real example.

Likelihood ratio

Suppose that the mixed stain recovered from the scene of
the crime and some persons, e.g. the victim and the sus-
pect, are tested with the aim of identifying the true perpe-
trator(s). The likelihood ratio,

L R = P
(
Evidence

∣
∣Hp

)

P (Evidence |Hd )
,

is usually used to evaluate the weight of the evidence re-
garding whether the suspect has contributed to the mixed
sample, where Hp and Hd are the prosecution and defense
propositions, and the evidence is the genetic information
obtained from the mixed stain and the typed person(s).
Following Fung and Hu (2000a, 2001), let K denote the
collection of genotypes (not necessarily distinct) of the
typed person(s) and M denote the (distinct) genetic profile
of the mixed stain. Expressing the evidence as (M,K), we
have:

L R = P
(
M, K

∣∣Hp

)

P (M, K |Hd )
= P

(
M

∣∣K , Hp

)

P (M |K , Hd )

P
(
K

∣∣Hp

)

P (K |Hd )
= P

(
M

∣∣K , Hp

)

P (M |K , Hd )

from the third law of probability. The latter equality holds
because both hypotheses Hp and Hd contain no different
assumptions about the relationship (and origin) of the per-
sons with known genotypes (K), and so P(K|Hp)=P(K|Hd).
Thus the evaluation of LR is induced to the evaluation of

the conditional probability P(M|K,H) for some hypothesis
H. Under H, let x be the number of unknown contribu-
tor(s) and X be their genetic profile. Since the mixture M
is contributed by the known and unknown contributors,
we have U⊂X⊂M, where set U comprises the alleles pre-
sent in mixture M but not in the genetic profile of the
known contributor(s) declared by H, i.e., the alleles in set
U have to be contributed by the x unknown contributor(s).
For the rest of the paper, we use the notation Px(U,M|K),
instead of P(M|K,H), to express the conditional probabil-
ity P(U⊂X⊂M|K), and the evaluation of LR becomes the
evaluation of Px(U,M|K).

Without loss of generality, assume M={1,2,...,m} and
the corresponding allele frequencies be p1,p2,...,pm. By the
principle of inclusion and exclusion, we have:

Px (U, M |K ) = P (U ⊂ X ⊂ M |K )

= P (X ⊂ M |K ) − P (∪i∈U (X ⊂ M\ {i}) |K )

= ∑

M\U⊂C⊂M
(−1)|M\C | W (C) = W (M) − ∑

i∈U
W (M\ {i})

+ ∑

i, j∈U
W (M\ {i, j}) − · · · + (−1)|U | W (M\U ) ,

(1)

where

W (C) = P(X ⊂ C |K )

is defined for arbitrary subset C of M satisfying
M\U⊂C⊂M, |U| is the cardinality of set U with |U|≤2x. It
is now clear that the kernel of the evaluation of LR is con-
verted into the evaluation of W(C).

Under the Hardy-Weinberg (HW) law, it is obvious
that:

W (C) =
(

∑

i∈C

pi

)2x

and this leads to the formula reported in Weir et al. (1997)
and Fukshansky and Bär (1998):

Px(U, M) = s2x −
∑

i∈U

(s − pi )
2x +

∑

i, j∈U

(
s − pi − pj

)2x − · · · ,
(2)

where s=p1+p2+···+pm. For the other forms of W(C) re-
garding dependence and ethnicity, see Fukshansky and Bär
(1999, 2000), Fung and Hu (2000a, 2000b, 2001, 2002b).

Based on the form of the right side of Eq.2, the subset
U of M, and the sum s for the allele frequencies in M, we
define a function:

Q(r, U, s) = sr −
∑

i∈U

(s − pi )
r +

∑

i, j∈U

(
s − pi − pj

)r − · · ·

for integer-valued r, and introduce (Fukshansky and Bär
2000):

L(r, u, s) ≡ Lφ(r, u, s) = Q (r, {1, 2, . . . , u} , s) ,

Li (r, u − 1, s) ≡ L{i}(r, u − 1, s) = Q (r, {1, 2, . . . , u} \ {i} , s) ,

Li j (r, u − 2, s) ≡ L{i, j}(r, u − 2, s) = Q (r, {1, 2, . . . , u} \ {i, j} , s) ,

for any distinct 1≤i, j≤u. It is noted that the calculation
of Q(r,U,s) by a computer program is straightforward
and so are the calculations of L(r,u,s), Li(r,u–1,s), and
Lij(r,u–2,s).
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Evaluation of LR with the inclusion of relatives

It is not uncommon in practice that the relative(s) is(are)
involved in the pool of possible contributors and Eq.2
should be adjusted to meet this need. Let k0, 2k1 and k2 be
the kinship coefficients (Cotterman 1941; Wenk et al.
1996), or equivalently the probabilities that two persons
will share 0, 1 or 2 alleles identical by descent (ibd). See
Table 1 for values of kinship coefficients for eight com-
monly encountered relationships. In order to find the con-
ditional probability W(C)=P(X⊂C|K for any M\U⊂C⊂M
used in Eq.1, we derive the following formula for calcu-
lating the probability of joint genotypes for two related
non-inbreeding individuals R=r1r2 and S=s1s2,

P (R = r1r2, S = s1s2)

= k0 P (S) P (R) + k1

(
2 − δr1r2

) [
IS (r1) pr2 + IS (r2) pr1

]
ps1 ps2 + k2 P (S) δS R

= k0 P (S) P (R) + k1

(
2 − δs1s2

) [
IR (s1) ps2 + IR (s2) ps1

]
pr1 pr2 + k2 P (S) δS R,

(3)

where S (R) is the genetic profile of S(R), for example,
S = {s1, s2} for a heterozygous S=s1s2 and S = {s1} for a
homozygous S=s1s1, I is the indicator function, δSR=1 if
R=S and δSR=0 if R≠S. Note the second equality in Eq.3
follows the symmetry of R and S. The proof of Eq.3 is
given in the Appendix. As an application of Eq.3, we
list all seven joint genotype probabilities in Table 2,
which coincide with Eqs.4.13–4.18 of Evett and Weir
(1998).

From Eq.3, we can conclude the following two equa-
tions and their derivations are given in the Appendix:

P (R ⊂ C |S ) = k0

(
∑

i∈C

pi

)2

+ k1 [IC (s1) + IC (s2)]
∑

i∈C

pi + k2 IC (s1) IC (s2),

(4)

P (S ⊂ C,R ⊂ C) =
(

∑

i∈C

pi

)2


k0

(
∑

i∈C

pi

)2

+ 2k1

∑

i∈C

pi + k2



 .

(5)

In the remainder of this section, we also denote

A = {1, . . . , u} , B = M\A, Z = {m + 1, m + 2, . . .} ,

where i and j represent any distinct alleles from A, b1 and
b2 represent any alleles from B, and z1 and z2 represent
any alleles from Z.

In the following, we list two cases which are com-
monly encountered in practice in the interpretation of
mixed DNA samples and the corresponding formula for
evaluating Px(U,M|K) are given for U={1,...,u} therein.

Tested suspect with an unknown relative 
and unknown suspect with a tested relative

Assume that one suspect S was typed in a crime and the prop-
osition about the source contributors of the DNA mixture is:

H: One relative, R, of the suspect and other x–1 un-
knowns were contributors, where R is not typed. Write K
as (S, K0) and X = R ∪ X0, we have from Eq.4 for any
M\A⊂C⊂M

P(X ⊂ C |K ) = P(R ⊂ C |S) P(X0 ⊂ C)

=
(

∑

i∈C
pi

)2(x−1)
{

k0

(
∑

i∈C
pi

)2

+ k1 [IC (s1) + IC (s2)]
∑

i∈C
pi

+ k2 IC (s1) IC (s2)

}

(6)

where K0 is the collection of genotypes of the typed per-
son(s) except S, X0 is the genetic profile of the unknown
contributor(s) except R. Substituting Eq.6 into Eq. 1 and
using the notations L, Li, Lij introduced previously, we
have, for a given hypothesis H:

Px (U, M |K ) = k0 L(2x, u, s)
+ k1

[
IA (s1) Ls1 (2x − 1, u − 1, s) + IB (s1) L (2x − 1, u, s)

]

+ k1
[
IA (s2) Ls2 (2x − 1, u − 1, s) + IB (s2) L (2x − 1, u, s)

]

+ k2 IB (s1) IB (s2) L (2x − 2, u, s)
+ k2 [IM (s1) IM (s2) − IB (s1) IB (s2)] L S∩A (2x − 2, u − |S ∩ A| , s)

(7)

after simplification using the fact that IC(s1) is always 0
for any s1∈Z, IC(s1) is always 1 for any s1∈B, and IC(s1)
may take the value 0 or 1 if s1∈A.

Detailed expressions of Px(U,M|K) are given in Table 3
when suspect S can have seven different kinds of ge-
notypes. Table 3 also shows that the computation of
Px(U,M|K) is relatively simple for the given kinship coef-
ficients k0, 2k1, k2. In order to find the LR using Eq. 7 or
Table 3, it is necessary to have a precise specification of
the allele i out of the set A. For alleles in sets B and Z,
solely the fact of being part of the set, not the precise
specification of alleles, is of importance for the calcula-
tion of Px(U,M|K).
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Table 1 Values of kinship coefficients for commonly encoun-
tered relationships

Relationship k0 k1 k2

Parent-child 0 1/2 0
Siblings 1/4 1/4 1/4
Half-siblings 1/2 1/4 0
Grandparent-child 1/2 1/4 0
Uncle-niece 1/2 1/4 0
Cousins 3/4 1/8 0
Second cousins 15/16 1/32 0
Unrelated 1 0 0

Table 2 Expressions of joint genotype probabilities for seven pos-
sible pairs

P(R = i i, S = i i) = k0 p4
i + 2k1 p3

i + k2 p2
i

P(R = i i, S = j j) = k0 p2
i p2

j

P(R = i i, S = i j) = 2k0 p3
i pj + 2k1 p2

i pj

P(R = i i, S = jk) = 2k0 p2
i pj pk

P(R = i j, S = i j) = 4k0 p2
i p2

j + 2k1 pi pj (pi + pj ) + 2k2 pi pj

P(R = i j, S = ik) = 4k0 p2
i pj pk + 2k1 pi pj pk

P(R = i j, S = kl) = 4k0 pi pj pk pl



Consider a case where the suspect is not tested for some
reason, e.g. death, and the suspect’s relative is tested instead.
The proposition can be formulated as:

H: the suspect (not typed) and other x–1 unknowns were
contributors.

In this case the formula for the evaluation of Px(U,M|K)
is the same as Eq.7 with the interchange of R and S. Thus,
detailed expressions about the seven possible genotypes
of R can also be referred to Table 3. It is found that the ex-
pression of p(n,k) in Table 2 of Fukshansky and Bär (2000)
when R=AiB, E=E2 is not complete with the absence of
Li(2n–1,k–1,s)/4.

Two related persons were unknown contributors

Here we consider the case where two related persons are
declared to have contributed to the mixed stain. The propo-
sition can be written as:

H: two related persons R1 and R2, and x–2 unknowns
were contributors.

Under this situation, it can be shown from Eqs.1 and 5
that Px(U,M|K) has a simple form which is given as:

Px (U, M |K ) = k0 L(2x , u, s) + 2k1 L(2x − 1, u, s) + k2 L(2x − 2, u, s).

(8)

In this case, we do not need a table such as Table 3 of the
previous section for expressions on various possible com-
binations of genotypes.

Application

In this section, we apply Eqs.7 and 8 to a rape case that
happened in Hong Kong (Fung and Hu 2000b). The Pro-
filer PCR-STR system was employed, and the results of
the first three loci were selected, because it happened by
chance that the combinations of victim and suspect geno-
types for these three systems were both heterozygous, both
homozygous, and one heterozygous and one homozygous,
respectively, thereby giving a range of examples (Fung
and Hu 2000b). The details can be referred to in Table 4.
The following two explanations to the evidence are first
considered:

• Hp: contributors were the victim and the suspect
• Hd1: contributors were the victim and one relative of the

suspect.

Here, the victim, the suspect and the unknown are assumed
to come from the same ethnic population. The relation-
ship between the relative and the suspect is described by
the kinship coefficients k0, 2k1, k2. Table 5 lists the likeli-
hood ratios for six commonly encountered relationships,
including the unrelated case. As we can see from Table 5,
the effect of kinship on LR is substantial. For example in
locus D3S1358, the maximum LR value (63.40) is 20 times
the minimum one (3.11).

If the evidence was collected from somewhere other
than the victim’s body (Fung and Hu 2000b), another set
of explanations should be used, which is:

• Hp: contributors were the victim and the suspect
• Hd2: contributors were one relative of the suspect and

one unknown. 

The LRs are also reported in Table 5, which are larger than
those given earlier. However, the effect of kinship on LR
is not as large as before. As in the previous case, the rela-
tionship of kinship has the effect of giving a smaller LR
(compared with the unrelated situation), with the smallest
LR for the siblings relationship.

Finally, we consider the following explanations about
who the source contributors of the mixed stain were:

• Hp: contributors were the victim and the suspect
• Hd3: contributors were two related persons (relatives).

Equation 8 can be applied to evaluate the LR for various
relationships (Table 5). Unlike the other two previous
cases, under the current set of hypotheses, the LR at locus
D3S1358 for the siblings relationship is the highest
(LR=1,140), while that for the unrelated situation is the

42

Table 3 Expressions for 
the conditional probability
Px(U,M|K) for a tested suspect
S with an unknown relative, or
a tested relative R with a non-
tested suspect

Note: i≠j∈A, b1,b2∈B, and
z1,z2∈Z

Case S/R Conditional probability

1 ii k0L(2x,u,s)+2k1Li(2x–1,u–1,s)+k2Li(2x–2,u–1,s)

2 ij k0L(2x,u,s)+k1[Li(2x–1,u–1,s)+Lj(2x–1,u–1,s)]+k2Lij(2x–2,u–2,s)

3 ib1 k0L(2x,u,s)+k1[L(2x–1,u,s)+Li(2x–1,u–1,s)]+k2Li(2x–2,u–1,s)

4 iz1 k0L(2x,u,s)+k1Li(2x–1,u–1,s)

5 b1b2 k0L(2x,u,s)+2k1L(2x–1,u,s)+k2L(2x–2,u,s)

6 b1z1 k0L(2x,u,s)+k1L(2x–1,u,s)

7 z1z2 k0L(2x,u,s)

Table 4 Alleles detected in a rape case in Hong Kong

Locus Mixture Victim Suspect Frequency
(M) (V) (S)

D3S1358 14 14 0.033
15 15 0.331
17 17 0.239
18 18 0.056

vWA 16 16 0.155
18 18 0.158

FGA 20 20 0.042
24 24 0.166
25 25 0.106



lowest (LR=285). However, the lowest LRs at vWA and
FGA go to the siblings and the parent-child relationships,
respectively. The effect of kinship is mixed under this par-
ticular set of hypotheses.

Concluding remarks

A formula is derived for calculating the match probability
when one relative of the suspect was the contributor of the
mixed stain. We assume that the other unknown contribu-
tors are unrelated to the suspect and the population satis-
fies the Hardy-Weinberg law and linkage equilibrium.
The other case is also studied and it also involves the re-
lationship of two persons (relatives).

If we want to discuss the case where two or more rela-
tives of the suspect are involved in the pool of perpetra-
tors, we first have to develop the theory of kinship among
three or more persons. This is a much more complicated
task and we are not aware of any general theory in the lit-
erature. However, cases with two or more relatives of the
suspect involved are not so common in practice.

The independence assumption of alleles may be re-
laxed to allow for the possible existence of population
substructure. We are working in this direction and hope to
report our findings in the near future.
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Appendix

A1 Proof of Eq.3

As in Evett and Weir (1998), suppose individual R has al-
leles a and b and S has alleles c and d at some autosomal
locus, where alleles a and c are of paternal and alleles b
and d are of maternal origin. It is noted that alleles a and
b take a unique value for a homozygous R and two values
for a heterozygous R, and also for S . Then the kinship co-
efficients k0, 2k1, k2 can be expressed as k0=P(no ibd allele),
2k1=P(a≡c)+P(a≡d)+P(b≡c)+P(b≡d), and k2=P(a≡c,b≡d)+
P(a≡d,b≡c), where the equivalence sign (≡) is used to in-
dicate an ibd (identical by descent) relationship.

Let IBDA be the ibd alleles between the two individuals
R and S, then all the possibilities for IBDA are: IBDA=none,
IBDA=r1, IBDA=r2 (if r2≠r1), and IBDA=r1,r2. It is obvi-
ous that:

P (R = r1r2, S = s1s2, I B D A = none) = k0 P(R)P(S).

(9)

For two homozygous R and S where R=S=ii, it is con-
cluded that:

P(R = i i, S = i i, I B D A = i, i) = P(a = i, b = i; c = i, d = i, I B D A = i, i)
= P(a = i, b = i; c = i, d = i, a ≡ c, b ≡ d)

+P(a = i, b = i; c = i, d = i, a ≡ d, b ≡ c)
= [P(a ≡ c, b ≡ d) + P(a ≡ d, b ≡ c)] p2

i .

For two heterozygous R and S where R=S=ij, it is con-
cluded that:
P(R = i j, S = i j, I B D A = i, j) = P(a = i, b = j; c = i, d = j, I B D A = i, j)

+P(a = j, b = i; c = i, d = j, I B D A = i, j)
+P(a = i, b = j; c = j, d = i, I B D A = i, j)
+P(a = j, b = i; c = j, d = i, I B D A = i, j)

= P(a = i, b = j; c = i, d = j, a ≡ c, b ≡ d)

+P(a = j, b = i; c = i, d = j, a ≡ d, b ≡ c)
+P(a = i, b = j; c = j, d = i, a ≡ d, b ≡ c)
+P(a = j, b = i; c = j, d = i, a ≡ c, b ≡ d)

= [P(a ≡ c, b ≡ d) + P(a ≡ d, b ≡ c)] · 2pi pj .
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Table 5 The effect of kinship
relationship on the likelihood
ratios in a rape case of Hong
Kong (see Table 4), where the
prosecution proposition is Hp:
contributors were the victim
and the suspect, and the de-
fense proposition takes three
different forms

Hd1: contributors were the vic-
tim and one relative of the sus-
pect.
Hd2: contributors were one rel-
ative of the suspect and one
unknown.
Hd3: contributors were two re-
lated persons (relatives).
aThe same as the grandparent-
child and the uncle-niece rela-
tionship.
bThe parent-child relationship
is impossible for a mixture of
four distinct alleles.

Defense Relationship Likelihood ratios Overall
proposition

D3S1358 vWA FGA

Hd1 Parent-child 7.35 3.19 3.18 74.56
Siblings 3.11 2.35 2.38 17.39
Half-siblingsa 13.18 5.18 5.42 370.04
Cousins 21.82 7.52 8.33 1,366.84
Second cousins 42.94 11.36 13.99 6,824.30
Unrelated 63.40 13.70 18.07 15,695.24

Hd2 Parent-child 66.11 37.12 113.83 279,339
Siblings 56.47 29.36 116.62 193,351
Half-siblingsa 107.33 56.60 172.87 1,050,164
Cousins 155.94 76.73 233.39 2,792,575
Second cousins 236.14 104.64 316.49 7,820,369
Unrelated 285.01 119.08 359.11 12,187,830

Hd3 Parent-child b 43 226 9,718
Siblings 1140 39 343 15,249,780
Half-siblingsa 570 64 277 10,104,960
Cousins 380 83 313 9,872,020
Second cousins 304 107 346 11,254,688
Unrelated 285 119 359 12,175,485



Thus, we obtain

P (R = r1r2, S = s1s2, I B D A = r1, r2) = k2 P(S)δRS .

(10)
Similarly, we have

P (R = r1r2, S = s1s2, I B D A = r1) = 2k1 IS(r1)pr2 ps1 ps2 .

(11)
Based on Eqs.9–11, we have
P (R = r1r2, S = s1s2) = P (R = r1r2, S = s1s2, I B D A = none)

+P (R = r1r2, S = s1s2, I B D A = r1)

+ (
1 − δr1r2

)
P (R = r1r2, S = s1s2, I B D A = r2)

+P (R = r1r2, S = s1s2, I B D A = r1, r2)

= k0 P(R)P(S) + k1
[
2IS (r1) pr2 + 2

(
1 − δr1r2

)
IS (r2) pr1

]

ps1 ps2 + k2 P(S)δRS .

Thus, Eq.3 holds.

A2 Proof of Eqs.4 and 5

We first give the following results:

∑

R⊂C

P(R) =
(

∑

i∈C

pi

)2

, (12)

∑

R⊂C

IR (s1) pr1 pr2 = IC (s1) ps1

∑

i∈C

pi , (13)

∑

R⊂C

δS R = IC (s1) IC (s2). (14)

Note that Eqs.12 and 14 are straightforward. For R ⊂ C ,
the genotype R may be homozygous or heterozygous, viz.
R=r1r1 or R=r1r2, where r1≠r2 and r1,r2∈C. In order to
guarantee IR(s1) = 1, we can assume r1=s1 without loss
of generality. So Eq.13 follows from:

∑

R⊂C
IR (s1) pr1 pr2 = IC (s1)

(

p2
s1

+ ∑

i �=s1,i∈C
ps1 pi

)

= IC (s1) ps1

∑

i∈C
pi .

According to Eq.3, we like to find the summation of joint
genotype probability P(R,S) over all R ⊂ C for any given
set C of M. It is observed from Eq.3 that the summation
comes down to find the summations corresponding to the
coefficients of k0, k1 and k2 therein over all R ⊂ C , desig-
nated as T0, T1, T2, respectively. From Eqs.12–14, it is ob-
vious that:

T0 = P(S)
∑

R⊂C
P(R) = P(S)

(
∑

i∈C
pi

)2

,

T1 = ∑

R⊂C

(
2 − δr1r2

) [
IS (r1) pr2 + IS (r2) pr1

]
ps1 ps2

= ∑

R⊂C

(
2 − δs1s2

) [
IR (s1) ps2 + IR (s2) ps1

]
pr1 pr2

= (
2 − δs1s2

)
ps1 ps2 [IC (s1) + IC (s2)]

∑

i∈C
pi

= P(S) [IC (s1) + IC (s2)]
∑

i∈C
pi ,

T2 = P(S)
∑

r1,r2∈C
δS R = P(S)IC (s1) IC (s2) .

Therefore we have:
∑

R⊂C
P(R, S) = k0 P(S)

(
∑

i∈C
pi

)2

+ k1 P(S) [IC (s1) + IC (s2)]
∑

i∈C
pi

+k2 P(S)IC (s1) IC (s2) ,

and

P(R ⊂ C,S ⊂ C) = ∑

S⊂C

∑

R⊂C
P(R, S) = k0

(
∑

i∈C
pi

)2 ∑

S⊂C
P(S)

+k1
∑

i∈C
pi

∑

S⊂C
P(S) [IC (s1) + IC (s2)]

+k2
∑

S⊂C
P(S)IC (s1) IC (s2)

= k0

(
∑

i∈C
pi

)2 (
∑

i∈C
pi

)2

+ 2k1
∑

i∈C
pi

(
∑

i∈C
pi

)2

+k2

(
∑

i∈C
pi

)2

.

Thus, Eq.5 holds.
Furthermore,

P(R ⊂ C |S ) = ∑

R⊂C
P(R, S)/P(S)

= k0

(
∑

i∈C
pi

)2

+ k1 [IC (s1) + IC (s2)]
∑

i∈C
pi

+k2 IC (s1) IC (s2) .

This is just Eq.4.
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